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Abstract

This note introduces a wrapper for qreg which reports standard errors and t

statistics that are asymptotically valid under heteroskedasticity and misspecification

of the quantile regression function. Moreover, the result of an heteroskedasticity test

are also presented to guide the researcher in the choice of the appropriate covariance

matrix estimator to use.
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1. INTRODUCTION

Quantile regression (Koenker and Bassett, 1978, Koenker, 2005) is a useful tool which

is widely used in empirical work. Although the computation of the quantile regression

estimates is relatively straightforward, obtaining the corresponding standard errors is often

perceived as being more problematic.

Currently, Stata offers two ways of computing the covariance matrix of quantile regres-

sion estimates.1 The qreg command computes standard errors that are valid when the

∗Machado is consultant for the Research Department of Banco de Portugal. The authors gratefully

acknowledge the partial financial support from Fundação para a Ciência e Tecnologia, program POCTI,

partially funded by FEDER (FEDER/POCI 2010).
†Faculdade de Economia, Universidade NOVA de Lisboa. E-mail: jafm@fe.unl.pt.
‡University of Essex and CEMAPRE. E-mail: jmcss@essex.ac.uk.
1The recently announced Stata 13 allows the computation of heteroskedasticity-robust standard errors;

the evaluation of this new estimator is left for future research.
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errors are identically distributed, a case in which quantile regression is not particularly

interesting. Alternatively, the commands bsqreg and sqreg compute the standard errors

of the quantile regression estimates using the pairs-bootstrap, a procedure recommended

by Buchinsky (1995).

Although there are doubts about its asymptotic validity in the case of the quantile

regression (Machado and Parente, 2005), the pairs-bootstrap estimator is widely used and

the simulation results reported by Buchinsky (1995) suggest that it is likely to perform well

in practice. The problem with the bootstrap estimator is that it is somewhat impractical

when the problem involves very large samples and many regressors because in this case the

computation of the bootstrap covariance matrix using a reasonable number of bootstraps

is still very time consuming.

This note introduces an ado file to estimate quantile regression which extends the qreg

command by reporting standard errors and t statistics that are asymptotically valid under

heteroskedasticity and misspecification of the quantile regression function.2 Moreover, the

command also presents the result of an heteroskedasticity test which the researcher can

use as a guide in the choice of the appropriate covariance matrix estimator to use. A

second ado file is provided which permits the computation of the same heteroskedasticity

test after the standard Stata commands for quantile regression (qreg, bsqreg and sqreg)

or after least squares regression (reg).

The reminder of this note is organized as follows. Section 2 briefly discusses the different

estimators of the covariance matrix of quantile regression estimates. Section 3 introduces

the heteroskedasticity test, and Section 4 briefly describes the ado files and illustrates the

performance of the proposed methods using a small simulation study. Section 5 concludes.

2From version 3.1, qreg2 also allows the computation of clustered standard errors; see Parente and

Santos Silva (2013).
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2. THE COVARIANCE OF THE QUANTILE REGRESSION ESTIMATOR

2.1. Asymptotic results

Consider the following linear quantile regression

yi = x′iβ (τ) + ui (τ)

where Qu(τ)(τ |xi) = 0.3 In their seminal paper, Koenker and Bassett (1978) (see also

Koenker, 2005) have shown that the parameters of interest can be estimated by

β̂ (τ) = arg min
b

1

n

n∑
i=1

ρτ (ui (τ))

where ρτ (a) = a (τ − 1 (a < 0)) is the so-called X-function, and that under suitably reg-
ularity conditions, including the assumption that the errors ui (τ) are i.i.d.,

√
n
(
β̂ (τ)− β (τ)

)
d→ N (0, V ) ,

with

V =

(
τ (1− τ)[
fu(τ)(0)

]2
)

[E(xx′)]−1,

where fu(τ)(0) denotes the density of ui (τ) at zero.

The assumption that the errors are i.i.d. was typical of the literature on robust regression

of the 1970s (e.g., Huber, 1973, Hogg, 1979), but it was quickly realized that quantile

regression offered much more than a robust estimator of a measure of central tendency.

Indeed, quantile regression is particularly useful when the conditional distribution of yi

depends on the regressors in complex ways, in which case ui (τ) will not be independent

of xi.

The asymptotic distribution of the quantile regression estimator under more general

conditions was considered by Koenker and Bassett (1982), Powell (1984), Chamberlain

(1994), and Kim and White (2003) leading to the conclusion that, when the errors are

3In the interest of space, standard notation is used throughout so that the definition of the symbols

used is kept to a minimum.
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independent but not identically distributed and the quantile regression is possibly mis-

specified,
√
n
(
β̂ (τ)− β (τ)

)
d→ N

(
0, D−1AD−1

)
,

where

D = E
[
fu(τ) (0|xi)xix′i

]
, A = E

[
(τ − 1 (yi < x′iβ (τ)))2xix

′
i

]
,

and fu(τ) (0|xi) denotes the conditional distribution of u (τ) evaluated at zero. It is clear

that when the model is correctly specified and the errors are i.i.d., D−1AD−1 = V .

2.2. Estimation of the covariance matrix

Stata’s qreg command uses a covariance matrix estimator of the form R−12 R1R
−1
2 , where

R1 =
1

nf̂ 20

n∑
i=1

(τ − 1 (û (τ)i < 0))2 xix
′
i, R2 =

1

n

n∑
i=1

xix
′
i,

and f̂0 is a nearest-neighbor-type estimator of fu(τ)(0) (see Rogers, 1993, for details).

It is easy to see that the estimator used by qreg converges to D−1AD−1 when

fu(τ) (0|xi) = fu(τ) (0), but it is generally inconsistent in the more interesting case in

which the errors are not identically distributed.

It is, however, possible to construct consistent estimators of A and D and thereby

obtain a consistent estimator of the asymptotic covariance matrix of the quantile regression

estimator. Indeed, following Powell (1984), Chamberlain (1994), and Kim and White

(2003), A can be consistently estimated by

Â =
1

n

n∑
i=1

(τ − 1 (û (τ)i < 0))2xix
′
i,

whereas, for an appropriately defined smoothing parameter δn,

D̂ =
1

2nδn

n∑
i=1

1 (−δn ≤ û (τ)i ≤ δn)xix
′
i

is a consistent estimator of D.4

4To accommodate censored data, Powell (1984) uses a one-sided rectangular kernel in the estimation

of D̂. For non-censored data, a more standard kernel centred at zero is preferable, see Buchinsky (1995).
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In order to implement this estimator all that is needed is to define a practical method of

choosing δn. The simple solution used in qreg2,5 the ado file to be introduced in the next

section, is to choose δn as described in Koenker (2005, p. 81). In particular, we define

δn = κ
[
Φ−1 (τ + hn)− Φ−1 (τ − hn)

]
,

where hn is (see Koenker, 2005, p. 140)

hn = n−1/3
(

Φ−1
(

1− 0.05

2

))2/3(
1.5 (φ (Φ−1 (τ)))

2

2 (Φ−1 (τ))2 + 1

)1/3
,

and κ is a robust estimate of scale. After some experimentation, we decided to define κ

as the MAD (median absolute deviation) of the τ -th quantile regression residuals.

As an alternative to the use of analytical covariance matrix estimators, the Stata com-

mands bsqreg and sqreg estimate the covariance matrix using pairs-bootstrap, as recom-

mended by Buchinsky (1995). Asymptotically, the bootstrap estimates have no advantage

over the estimator constructed using Â and D̂, and are still too computer intensive to be

practical in applications using large data sets. Moreover, although the results in Buchinsky

(1995) suggest that the bootstrap covariance matrix may perform well in finite samples, it

is unlikely that the 20 bootstrap draws used by default in Stata will be enough to achieve

satisfactory results in more demanding applications, further increasing the computational

cost of this approach.

3. QUANTILE REGRESSION TESTS FOR HETEROSKEDASTICITY

Although Stata does not provide any specific command to perform a quantile regression-

based heteroskedasticity test, versions of the test suggested by Koenker and Bassett (1982)

can easily be implemented by using iqreg to estimate an inter-quantile regression and then

using test to check the significance of the estimated slopes, or of a sub-set of them.

Although this test is conceptually attractive and easy to implement, it is cumbersome

in that the results of the inter-quantile often are not of independent interest and their

5A different bandwidth was used before version 3.1.
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bootstrap covariance matrix estimated by Stata is computationally expensive in realistic

applications.

An alternative way to perform a quantile regression-based heteroskedasticity test was

proposed by Machado and Santos Silva (2000). Their test statistic can be easily computed

as n times the R2 of the auxiliary regression of ρτ (ûi (τ)) on a constant and on appropriate

functions of x. The test can then be performed by comparing the test statistic with the

critical value from the χ2(J−1) distribution, where J is the number of parameters in the

auxiliary regression.

The Machado-Santos Silva (MSS) test is simple enough to be routinely performed after

quantile regression, thereby providing the researcher with information not only about

the kind of covariance matrix that is more appropriate but also about the relevance of

estimating multiple quantiles.6

4. THE QREG2 AND MSS ADO FILES

4.1. qreg2

qreg2 is a wrapper for qreg which estimates quantile regression and reports standard

errors and t-statistics that are asymptotically valid under heteroskedasticity and misspeci-

fication. The robust covariance matrix is computed using Â and D̂, as described in Section

2. The results based on the non-robust covariance matrix can be displayed with the option

norobust.

Additionally, qreg2 reports the value of the objective function, defined as the average of

the check function,7 and the R2, defined as the square of the correlation between the fitted

values and the dependent variable. Unlike the R2 reported by qreg, the one reported by

6It should be noted that, strictly speaking, both the MSS test and the test proposed by Koenker and

Bassett (1982) will check not only for heteroskedasticity but also for other departures from the assumption

that the errors are identically distributed.
7The “Min sum of deviations” reported by qreg corresponds to 2n times the value of the objective

function reported by qreg2.
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qreg2 is not based on any assumption about the distribution of the errors. It should be

noted, however, that in quantile regressions the R2 is even less meaningful than usual.

Finally, qreg2 reports the result of the Machado-Santos Silva (2000) test for het-

eroskedasticity. By default the test variables are the fitted values of the dependent variable

and its squares as in the “Special case of the White test”described byWooldridge (2009, p.

276), but alternative sets of test variables can be specified with the option mss(varlist).

Obviously, the performance of the test will depend on the quantile being estimated.

4.2. mss

The MSS test may be of interest even when qreg2 is not appropriate, for example

because the sample size is too small for the its covariance matrix estimator to be reliable.

Moreover, the MSS test can also be performed after OLS regressions (see Im, 2000, and

Machado and Santos Silva, 2000). The mss ado file implements the MSS test for reg,

qreg, bsqreg and sqreg (in this case, the results of the first quantile are considered).

By default the test variables are the fitted values of the dependent variable and its

squares as when the rest is performed after qreg2. Alternative sets of test variables can

be specified simply by listing the test variables after mss.

4.3. Simulation results

In this section we present the results of a small simulation study on the performance

of the covariance matrix estimators computed by qreg, bsqreg, and qreg2. The de-

fault options were used for all estimators; therefore median regression was used in all

cases. Additionally, the performances of the MSS test for heteroskedasticity computed

by qreg2 (with the default options) and of a version of the Koenker and Bassett (1982)

heteroskedasticity test are also evaluated.

The simulated data were generated by

yi = 1 + βxi + exp (ωxi) εi, i = 1, . . . , n,
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where xi ∼ χ2(3), εi ∼ N (0, 1), and β = 1. The performance of the covariance estimators

are evaluated by comparing the rejection frequencies of H0 : β = 1. The Koenker and

Bassett (1982) test was performed by testing that xi has a coeffi cient equal to zero in

the inter-quartile regression of yi on a constant and on xi, performed using the iqreg

command with the default options. For each of the designs, yi, xi and εi were newly

generated for each of the 10000 replications used in the experiment.

Table 1 gives the rejection frequencies at the 5% level for H0 : β = 1 obtained using

qreg, bsqreg, and qreg2. When ω = 0 the estimators of the covariance matrix used

by the different commands perform reasonably. As expected, when heteroskedasticity

is present, the t statistic provided by qreg has an empirical size which is far from the

desired significance level. In these cases, both bsqreg, and qreg2 report t statistics whose

empirical size is close to 5%. It is worth noting that in all cases considered the bootstrap

estimator of the covariance matrix is actually outperformed by the analytical estimator

implemented in qreg2.

Table 2 presents the rejections frequencies at the 5% level of the Koenker and Bassett

(1982) heteroskedasticity test (labeled KB) and of the MSS test. Under the null (ω = 0)

both tests are reasonably well behaved even for n = 100. However, when heteroskedasticity

is present, the MSS test is substantially more powerful than the KB test, at least in the

conditions of this experiment.

Table 1: Rejection frequencies at the 5% level for H0 : β = 0 using different commands

n 100 1000 10000

ω 0.00 0.05 0.10 0.00 0.05 0.10 0.00 0.05 0.10

qreg 0.0791 0.1321 0.2050 0.0518 0.1121 0.1818 0.0522 0.1115 0.1850

bsqreg 0.0657 0.0722 0.0762 0.0697 0.0733 0.0707 0.0673 0.0695 0.0682

qreg2 0.0507 0.0706 0.0755 0.0533 0.0579 0.0588 0.0508 0.0513 0.0519
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Table 2: Rejection frequencies at the 5% level for H0 : ω = 0

n 100 1000 10000

ω 0.00 0.05 0.10 0.00 0.05 0.10 0.00 0.05 0.10

KB 0.0359 0.0966 0.3101 0.0558 0.8204 0.9997 0.0572 1.0000 1.0000

MSS 0.0490 0.2972 0.7780 0.0510 0.9970 1.0000 0.0467 1.0000 1.0000

5. CONCLUDING REMARKS

The results of the small simulation experiment reported in Section 4 confirm that, at

least for realistic sample sizes, the asymptotically valid standard errors reported by qreg2

perform as well as bootstrap standard errors computed by bsqreg, even when strong

heteroskedasticity is present. Therefore, the qreg2 command may prove to be useful for

researchers estimating quantile regressions it that is avoids the need to use bootstrap,

which can be very time consuming, especially in applications with many regressors and

large samples.
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